Ligand-induced Closure of Inward Rectifier Kir6.2 Channels Traps Spermine in the Pore
نویسندگان
چکیده
Small organic amines block open voltage-gated K+ channels and can be trapped by subsequent closure. Such studies provide strong evidence for voltage gating occurring at the intracellular end of the channel. We engineered the necessary properties (long block times with unblock kinetics comparable to, or slower than, the kinetics of gating) into spermine-blocked, ATP-gated (N160D,L157C) mutant KATP channels, in order to test the possibility of "blocker trapping" in ligand-gated Kir channels. Spermine block of these channels is very strongly voltage dependent, such that, at positive voltages, the off-rate of spermine is very low. A brief pulse to negative voltages rapidly relieves the block, but no such relief is observed in ATP-closed channels. The results are well fit by a simple kinetic model that assumes no spermine exit from closed channels. The results incontrovertibly demonstrate that spermine is trapped in channels that are closed by ATP, and implicate the M2 helix bundle crossing, or somewhere lower, as the probable location of the gate.
منابع مشابه
The Polyamine Binding Site in Inward Rectifier K+ Channels
Strongly inwardly rectifying potassium channels exhibit potent and steeply voltage-dependent block by intracellular polyamines. To locate the polyamine binding site, we have examined the effects of polyamine blockade on the rate of MTSEA modification of cysteine residues strategically substituted in the pore of a strongly rectifying Kir channel (Kir6.2[N160D]). Spermine only protected cysteines...
متن کاملParadoxical activation of an inwardly rectifying potassium channel mutant by spermine: "(b)locking" open the bundle crossing gate.
Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltage-dependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block...
متن کاملActivation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملElectrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملKirBac1.1: It's an Inward Rectifying Potassium Channel
KirBac1.1 is a prokaryotic homologue of eukaryotic inward rectifier potassium (Kir) channels. The crystal structure of KirBac1.1 and related KirBac3.1 have now been used extensively to generate in silico models of eukaryotic Kir channels, but functional analysis has been limited to (86)Rb(+) flux experiments and bacteria or yeast complementation screens, and no voltage clamp analysis has been a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 122 شماره
صفحات -
تاریخ انتشار 2003